THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF ARCHITECTURAL ENGINEERING

AN ARCHITECTURAL ENGINEERING STUDY AND LIGHTING DESIGN PROPOSAL FOR THE HOUSTON MUSEUM OF AMERICAN ART

CHANG LIU SPRING 2013

A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Architectural Engineering with honors in Architectural Engineering

Reviewed and approved* by the following:

Richard Mistrick Associate Professor Co-Thesis Supervisor and Honors Advisor

Kevin Houser Professor Co-Thesis Supervisor and Faculty Reader

* Signatures are on file in the Schreyer Honors College.

Houston Museum of American Art new york, ny

Architecture

The Houston Museum of American Art's design takes a strong and strikingly asymmetrical form, which responds to the industrial character of the neighboring loft buildings and adjacent overhead railway. The upper stories of the building will stretch toward a nearby river on the west side and step back gracefully from the elevated railway on the east side.

Lighting/Electrical

Building system voltage: 208Y/120 volts, 3 phase 75 KVA UPS system 750 KW diesel generator 75 KW gas-fired reciprocating cogeneration unit Digital network lighting control system Dual-technology occupancy/vacancy sensors Interior and exterior daylight sensors

Structural

Concrete slab on composite metal deck on steel framing

Caisson pile-supported foundation

Concrete secant wall around the perimeter of the site Framing system of long span beams with deck framing

Special steel concentric braced lateral framing system with special steel seismic detailing Cable supported lobby façade

Mechanical

(4) Air conditioning systems located on cellar & 9th floor

Lobby facade heated and cooled by fan coil units (4-pipe) located along the glass façade wall All-air VAV system for gallery-type areas, auditorium

All-air constant volume system for lobby, restaurant

(3) Electrically driven centrifugal refrigeration machines 300 TR

(5) Cell roof-top cooling towers with 600 GPM/cell

Statistics

Size: 222,952 sf Levels: 9 stories above grade Cost: \$266 million Construction Dates: Aug 14, 2012 - Nov 28, 2014 Project Delivery: Design-Bid-Build

Project Team

Lighting Engineer: Ove Arup & Partners Construction Manager: Turner Construction, LLC

Design Architect: Renzo Piano Building Workshop Executive Architect: Cooper, Robertson & Partners MEP Engineer: Jaros, Baum & Bolles

Chang Liu

Lighting + Electrical

http://www.engr.psu.edu/ae/thesis/portfolios/2013/cwl5153/index.html

ACKNOWLEDGEMENTS

I would like to thank the many individuals who made this thesis possible.

Ben Gordon	Engineer, Turner Construction
Jean Sundin	Principal, OVI
Enrique Peiniger	Principal, OVI
Shawn Good	Lighting Department Head, Brinjac Engineering
Sandra Stashik	Marketing Manager, Acuity Brands Lighting
Dr. Richard Mistrick	Honors Advisor, AE Lighting Associate Professor, Penn State
Dr. Kevin Houser	Thesis Advisor, AE Lighting Professor, Penn State
Leslie Beahm	Electrical Advisor, Reese Engineering

Family and friends for their support

ABSTRACT

This thesis report was conducted on the Houston Museum in New York City, New York. The Houston Museum of American Art is located at the west side of Manhattan, in the Meatpacking district. The building takes an asymmetrical form with upper stories of the building stretching toward the Hudson River on the west side and step back gradually to the elevated park of the High Line on the east side. The project includes more than 50,000 square feet of indoor galleries and 13,000 square feet of outdoor exhibition space on a series of rooftops facing east. The building also includes an education center, a multiuse black box theater, a study center, conservation lab and library reading room.

This Thesis report discusses the topics, methods, and results that were investigated during a yearlong capstone study on the Houston Museum of American Art. Existing designs were studied in the first semester to examine and find potential spaces to be further studied in the second semester. Engineering and architectural design alternatives were developed in the following semester with the objective of forming an in-depth thesis on building system design.

This thesis is comprised of lighting and electrical depth topics, as well as four additional breadth topics focused on mechanical, acoustical, and architectural engineering. The lighting depth is an investigation into design alternatives for a large work space, a circulation space, a special purpose space and building facade based on the re-imagined lighting concept. The electrical depth is interrelated to the CHP system to change the system voltage from 208Y/120V to 480Y/277V.

The first breadth is an investigation of the daylighting integration for the 8th floor gallery space. The second breadth is an investigation of the social aspects that can contribute to the re-imagined lighting concept, include self-congregation, motivation as well as scale perception. The third breadth is an investigation of the acoustical property of the theater space. The findings were coordinated with the alternate lighting design for the space. The fourth breadth is an investigation on the application of on-site energy production and waste heat recovery, also known as combined heat and power or cogeneration. The study will investigate the feasibility of cogeneration for the project based on EPA recommendations.

TABLE OF CONTENTS

SECTION ONE project background 1
SECTION TWO building statistics
SITE INFORMATION
GENERAL BUILDING DATA
ARCHITECTURAL INFORMATION
SUSTAINABILITY FEATURES
CONSTRUCTION METHOD4
ELECTRICAL SYSTEM4
LIGHTING SYSTEM4
MECHANICAL SYSTEM4
STRUCTURAL SYSTEM
SECTION THREE lighting depth6
Exterior space BUILDING FAÇADE7
Circulation space MAIN LOBBY11
Special purpose space THEATER17
Large workspace GALLERY21
SECTION THREE electrical depth
SECTION FOUR MAE breadth
SECTION FIVE honors breadth
SECTION SIX acoustical breadth
SECTION SEVEN mechanical breadth
SUMMARY AND CONCLUSION41
REFERENCES
APPENDIX A: LUMINAIRE SCHEDULE AND CUT SHEETS

SECTION ONE | project background

The existing Houston Museum is located in uptown, Manhattan. The new building which is the basis of this thesis report will vastly increase the Houston's exhibition and programming space. At the moment of this thesis being written, the new Houston is under construction in downtown Manhattan, and will be open to the public in 2015. The new building is designed by architect Renzo Piano and will situate between the High Line and the Hudson River.

The concept for the re-design is inspired by the following statement by Neil G. Bluhm, president of the Board of Trustees for the Houston, and Renzo Piano, the architect, respectively:

"The museum will be a dynamic new presence downtown ... as a vital resource that engages the neighborhood, enlivens the cultural dialogue, and welcomes the people of New York and beyond." - Neil G. Bluhm

"The future Houston is designed to embrace and reciprocate the energy of the neighborhood and provide a stimulating and immersive space in which to experience art." - Renzo Piano

SECTION TWO | building statistics

SITE INFORMATION

The Whitney's new building will be located in the Meatpacking District on Gansevoort Street at the southern entrance to the High Line.

Figure 1 | Site information

The meatpacking district is a twenty-square-block neighborhood on the far West Side of Manhattan. Just north of Gansevoort Street are some of New York's most notable restaurants, bars, fashion boutiques, clubs, and hotels. The neighborhood is bordered to the north and east by Chelsea, renowned for its art galleries, cultural organizations, and educational institutions. To the south is the West Village and its nineteenth-century townhouses, charming streets, and unique shop. To the West is the Hudson River.

The High Line is New York City's newest and most unique public park. It's one of the most ambitious urban reclamation projects. Located thirty feet above street level on a 1930s freight railway, the High Line is a linear park that extends for 22 blocks running from Gansevoort Street in the Meatpacking District to 34th Street in Clinton/Hell's Kitchen, allowing pedestrians to pass from neighborhood to neighborhood without coming in contact with a single vehicle and to see the city from a floating vantage point. It features an integrated landscape combining meandering concrete pathways with naturalistic plantings. The park opens from 7:00am to 7:00pm during winter seasons and 7:00am to 11:00pm during summer seasons.

Figure 2 | *Meatpacking district pictures*

GENERAL BUILDING DATA

Building Name: Houston Museum of American Art Location and Site: New York, NY Building Occupant Name: Houston Museum of American Art Occupancy or function types: A-3 (Assembly). The proposed building will contain dedicated gallery space, education and studio spaces, art-handling spaces, a restaurant, a café, a theatre, special-events spaces, museum shop, and a conservation lab. Size: 222,952 SF Number of Stories above Grade: 9 **Primary Project Team:** Owner: Houston Museum of American Art Design Architect: Renzo Piano Building Workshop www.rpbw.com Executive Architect: Cooper, Robertson & Partners www.cooperrobertson.com MEP Engineer: Jaros, Baum & Bolles www.jbb.com Lighting/Daylighting Engineer: Ove Arup & Partners www.arup.com LEED Consultant: Viridian Energy and Environmental, LLC www.viridianee.com Structural Engineer: Robert Silman Associates www.rsapc.com Construction Manager: Turner Construction, LLC www.turnerconstruction.com Dates of Construction: August 14, 2012 - November 28, 2014 Actual Cost: Building is under construction; estimated cost is 266million (100% CD) Project Delivery Method: Design-Bid-Build

ARCHITECTURAL INFORMATION

The Houston Museum of American Art's design takes a strong and strikingly asymmetrical form, which responds to the industrial character of the neighboring loft buildings and adjacent overhead railway. The upper stories of the building will stretch toward a nearby river on the west side and step back gracefully from the elevated railway on the east side. The building's massing is shaped in a faceted manner to provide view corridors between the adjacent elevated railway and the adjacent river. Additionally, the bulk of the building's mass is concentrated on the west side of the site. The building steps down toward the east in order to defer to the scale of the elevated railway and the existing neighborhood. Outdoor terraces will be located on each of these steps. One of the terraces will be used as "Testing Platform" for outdoor sculpture. A dramatically cantilevered entrance will shelter an 8,500SF outdoor plaza. The building will include more than 50,000SF of indoor galleries and 13,000SF of outdoor exhibition space on a series of rooftops, including an 18,000SF column-free museum gallery. The building also will include an Education Center offering dedicated space for state-of-the-art classrooms; a multi-use black box theater for film, video, and performance with an adjacent outdoor gallery; a 170-seat theater, a Works on Paper Study Center, large art Conservation Lab, Library Reading Room, a retail shop and restaurant on the ground-floor level and a top-floor café.

Major National Model Codes: IBC 2007

Zoning: District(s) M1-5 light manufacturing district (high performance) **Historical Requirements:** Not applicable

SUSTAINABILITY FEATURES

This project is registered with the U.S. Green Building Council under the Leadership in Energy and Environmental Design (LEEDTM) rating system:

Version: LEED 2009 for New Construction Rating: Minimum Silver Certification Owner's environmental requirements for construction including Ensure good indoor air quality (IAQ) during construction. Support reduced future maintenance and operation costs. Ensure reduced energy use and cost during construction. Reduce primary and secondary usage of fossil fuels and other Greenhouse gasses during construction. Ensure reduced water usage during construction and facilitate minimizing planned overall annual facility water usage. Give added decision-tree weight to minimizing life-cycle costs and overall embodied energy of systems, products and materials incorporated into the project. Manage demolition, sitework and construction to minimize waste, promote salvaged reuse, recycling or energy conversion, and specifically minimize amounts sent to landfills. Take preventative measures to reduce or eliminate environmental pollution and damage during construction.

CONSTRUCTION METHOD

Turner Construction Company is the primary construction management firm for this project. The delivery method is design-bid-build with a project estimation cost of 266 million dollars. BIM is used for MEPS Trade Coordination for the project. The entire building system include ventilation, lighting, power, systems, fire systems and security systems are operated with BMS via BACnet.

ELECTRICAL SYSTEM

The building utilization voltage is 208Y/120V, 3 phase with 750KW diesel fuel for emergency power system. The electrical system also includes a 75KVA UPS back-up system for electronics. The utility company for the project is the Consolidated Edison Company of New York. Four indoor free-standing, dead-front single ended 4000A service switchboards are used to feed the power to the building. The panelboards are MCB, bolt-in with NEMA 1 for indoor enclosure, NEMA 3R for wet locations. Copper conductors with soft-drawn annealed copper are used.

LIGHTING SYSTEM

Track lighting systems are used for the majority of the space inside the building including gallery areas, lobby, theater, etc. The system utilizes digital network lighting control as well as dual-technology occupancy/vacancy sensors. A solar clock is used to track the position of the sun to control the shades to limit penetration of direct sunlight. A lighting management hub utilizes Ethernet to integrate control station devices, power panels, shades, preset lighting controls, and external inputs.

MECHANICAL SYSTEM

Gallery-type areas and auditorium are served by all-air VAV system located on the cellar level(3) and level 9(1). Lobby and restaurant are served by all-air constant volume system located on level 1. The lobby façade is heated and cooled by fan coil units located along the glass façade wall. The main

refrigeration plant consists of three electrically driven centrifugal refrigeration machines sized at 300 tons-refrigeration each on the Cellar level and a five 200 tone cells cooling tower. The building is heated by hot water heating boiler plant consists of five condensing 3 million Btuh input hot water boilers.

STRUCTURAL SYSTEM

The structural system for the Houston Museum of American Art is primarily composed of concrete slab on composite metal deck on steel framing. The framing system is composed of long span beam with deck framing and special steel concentric braced lateral framing system with special steel seismic detailing. The foundation is caisson pile (encased in steel with diameters of either 9.875" or 13.375") supported and perimeter of the site is surrounded by concrete secant walls.

SECTION THREE | lighting depth

"The museum will be a dynamic new presence downtown ... as a vital resource that engages the neighborhood, enlivens the cultural dialogue, and welcomes the people of New York and beyond." - Neil G. Bluhm

"The future Houston is designed to embrace and reciprocate the energy of the neighborhood and provide a stimulating and immersive space in which to experience art." - Renzo Piano

The overall lighting concept was developed based on the architect and building owner's vision for the future Houston. Their vision emphasize on creating a dynamic, welcoming, enlivening, energetic, stimulating, immersive and most importantly engaging museum. The lighting concept extends from the idea of engaging the neighborhood, the culture, the energy and most importantly the people.

The design process is complex and powerful. The lighting approach and purpose in this thesis work is as much social as they are functional and aesthetics. The core lighting study started with investigating the relationship between people and their perceived world and valuing the idea that our field of view contributes largely to our complete understanding and experiences of the space.

By examining the different scale of human perception and the amount of interaction between people and their surroundings, the goal is to interpret and predict how lighting design will influences our understanding of the space. Finally, the lighting concept is re-imagined with the knowledge that specific and varying kinds of encounters, key to the unique social structure of the public life in New York City. (Refer to the honors breadth for the detailed analysis of the social concepts taken into consideration)

Exterior space | BUILDING FAÇADE

DESCRIPTION

The overall building shape is very sculptural and unusual. The building's massing is shaped in a faceted manner to provide view corridors between the Highline Park and the Hudson River. The bulk of the building's mass is concentrated on the west side of the site. The architect designed the building to step down toward the east in order to defer to the scale of the High Line Park and the existing neighborhood.

During the daytime, the façade becomes a dynamic presence and interaction with nature by constantly reflecting the mood of the sky. It captures and makes perceptible the delicacy, daily and seasonal dynamic, temporal rhythms, light and shadow and shifting color.

The exterior façade of the future Houston plays a prominent role in composing its identity at night. A design that really responds to the site and its neighborhood, the lighting solution should be established to enhance the building's dynamic presence and echoes the neighborhood's vibrant energy.

SU	RFACE	E MATERIAL	
~	0		-

Surface	Name	Description	Reflectance
Façade	C-4	Pre-cast concrete panel with smooth-as-cast finish,	0.5
		2-hr fire rated with double seal and weep tubes at	
		vertical joint	
	M-1	Carbon Steel. Custom color metallic feve	0.6
	WT-2	Steel plate rainscreen cladding system	0.7
	WT-6	Cable Wall glazing	
Table 1 building facade surface material			

Table 1 | building facade surface material

The building façade is composed of Steel Plate Rainscreen Cladding System. The system consists of 5/16" thick light gray enamel steel panels cladding with stainless steel mounting hardware and exposed stainless steel fasteners. Other materials utilized are precast concrete, and cable wall.

DESIGN CRITERIA

Oualitative Criteria:

The exterior facade of Renzo Museum of American Art plays a prominent role in composing its identity. The unique asymmetrical façade calls for a complementary lighting solution. The owner's vision for the museum is for it to embrace and reciprocate the energy of the neighborhood and provide a stimulating and immersive space in which to experience art. A cohesive exterior lighting design should not only showcase the vitality of the space, but at the same time provide a safe and pleasant gathering space and cultural harbor. At the same time, light pollution and trespass should be taken into consideration during design.

IES suggested important criteria:

Appearances of Space and Luminaires Light Distribution on Surfaces Light Pollution / Trespass IES suggested very important criteria: Point(s) of Interest Reflected Glare Shadows Source/Task/Eye Geometry Surface Characteristics Color Appearance (and Color Contrast) Direct Glare

Modeling of Faces or Objects

Quantitative Criteria:

Illuminance Recommendation [IES Lighting Handbook 10th Edition (Table26.2, 26.4, 22.4)]:

$\mathbf{E}_{\mathbf{v}}$
Lighter-toned façade materials (Reflectance
\geq 0.5), 200 lux ; Darker-toned façade
materials (Reflectance <0.5), 400 lux

Note: High activity, LZ-3

Energy Allowance [ASHRAE standard 90.1]:

Space Type	Power Density (W/sqf)	Note
Building Façade	0.2 W/ft ² for each illuminated wall or surface	Tradable
	or 5.0 W/linear foot for each illuminated wall	
	or surface length	
Building	1.0 W/linear foot for walkways less than 10 ft	Nontradable
Grounds	wide. 0.2 W/ft ² for walkway 10 ft wide or	
	greater, plaza areas, and special feature areas	
Canopies	1.25 W/ft^2	Tradable

DESIGN APPROACH

The lighting design takes two general approaches to the building façade based on the scale of perception discussed in the architectural breadth.

- 1. Activating the north façade to grab High Line pedestrian's attention. It is important to avoid a flat wash, instead using different lighting intensity to bring out the depth of the building volumes.
- 2. The interior luminaires also play an important role in constructing the appearance of the façade at night. Placement, consistency as well as intensity throughout the building is paramount.
- 3. Another emphasis of the façade lighting is at the south east for walking pedestrian passing by on Washington and Gansevoort streets. Thus, lobby lighting need to be incorporated to coordinate.

COMPUTER RENDERINGS

Figure 3 | *facade rendering*

LUMINAIRES AL-7, LED ingrade AL-8, LED step light

AL-9, LED linear luminaire

PERFORMANCE DATA

Using LED is able to increase the light level while still be able to maintain under the power density requirement set by ASHREA.

PERFORMANCE SUMMARY

The lighting redesign for the building façade is thoroughly investigated before implementation. Situated in the city that never sleeps where extravagant lighting is everywhere, the Houston Museum's light design has a more elegant and subtle take that is oriented toward the public experiences. The overall goal of engaging the people through an element of construction that is not touchable is achieved. The central idea of "people, building, city – in that order" presents itself through the lighting design.

The design approach was realized through different lighting element. The activation of the north façade is through the silhouette produced by the interior light and the surrounding lighting with the city as the back drop. Not only were the cream-color façade plates able to catch the natural light, they were perfect mirror of what's going on around the Houston. Thus the building will reflect a decent amount of light from other buildings around.

The south façade was lit with the emphasis of human scale. Instead of using large luminaires and lighting design that focus on the form of large units that removed life from the streets, more intimate luminaires were implemented. Additionally, to blend into the surrounding, the lighting design is subtle and simple. The outset goals were achieved. Additionally, the illuminance levels meet those specified in the IESNA handbook.

Circulation space | MAIN LOBBY

DESCRIPTION

The main lobby of the Houston Museum of American Art consists of a 1000-sqf gallery that is free of charge and open to public. Sculptures and outdoor installations will be exhibited, along with a membership booth located in the center of the lobby and a ticketing booth on the south-east corner. The main lobby has two different ceiling heights. From the center of the membership booth to the east, ceiling height is 14ft, and from the center of the membership booth to the west, ceiling height is 17ft. Figure 4 shows the spatial information of the main lobby through floor plan, reflected ceiling plan and interior elevations. The lobby space serves as an indoor plaza and the primary tasks in this space are circulation, socialization and exhibition.

Figure 4 | *Lobby floor plan*

SURFACE MATERIAL

Surface	Name	Description	Reflectance
Floor	S-1	3CM stone thermal finish	0.2
Wall	C-5	Pre-cast concrete panel with smooth-as-cast finish, Non fire rated with double seal and weep tubes at vertical joint	0.5
Ceiling	<i>CL</i> -7	Acoustic plaster	0.75
	11 C		

Table 2 | Lobby surface material

The exterior wall of the main lobby use cable wall system which consists of two 3/4" diameter pretensioned stainless steel cables taking lateral and gravity loads, with custom stainless steel patch fittings supporting laminated glass lites. Glazing module is 3'-4" wide.

DESIGN CRITERIA

Qualitative Criteria:

Traditionally, lobby is the space used to for visitors to transit from exterior to interior and vice versa. However for the Houston Museum of American Art, the lobby space is also an exhibition space, and an interior plaza. Thus, the main lobby serves three main purposes: it is the space adjacent to the entrance for circulation, it invites and gathers the neighborhood, and it is also an exhibition space. The circulation and general lighting in the lobby should meet the illuminance recommendation for safety reason. Flexible lighting solution should be applied to adapt to the various uses of the lobby space. As the public's primary physical and visual link to the rest of the museum, the lighting solution for the main lobby need to attract the neighborhood and correspond to the exterior changes, such as daylight. The lighting in the lobby also aims to create an engaging and welcoming environment. High quality color rendering is also important for visitors to truly experience the art installations in the space. Furthermore, IES 10th edition also suggested that for purpose of visual consistency and of maintenance convenience, lamp types and color qualities should match those used elsewhere.

IES suggested very important criteria:

Appearance of Space and Luminaires Daylighting Integration and Control Point(s) of Interest

IES suggested important criteria:

Modeling of Faces or Objects Surface Characteristics

Quantitative Criteria:

Illuminance Recommendation [IES Lighting Handbook 10th Edition (Table21.2)]:

Space Type	E _h	$\mathbf{E}_{\mathbf{v}}$	Avg:Min
Lobby - Day	100 lux @ floor	30 lux @ 5ft AFF	4:1
Lobby - Night	50 lux @ floor	20 lux @ 5ft AFF	4:1

Energy Allowance [ASHRAE standard 90.1]:

Space Type	Power Density (W/sqf)
Lobby	1.3 W/ft^2

DESIGN APPROACH

The temporary artworks displayed in the lobby provide an attractive selection of experiences and unpredictability.

- 1. Exhibition lighting should solely rely on directed light (spotlights) to bring out the shapes of the exhibits. The reflection from the walls always produces an indirect, diffuse component of light, and that is often enough of ambient light for navigation/orientation.
- 2. The lobby will be illuminated in a way that both provides intuitive way finding for visitors to the museum and highlight the sculptures and as well as stage on a show of people.
- 3. The lighting design in the lobby approaches from the social aspect of people flow and correspond to the strong and striking asymmetrical form. To reinforce the unpredictability of the exhibition selection, light tracks are installed based on the people mapping of the space. How potential movement is distributed is studied. Data is proposed based on movement paths and stop locations.
- 4. Track-mounted spotlights are deployed throughout the lobby, recessed into ceiling channels. The linear language of tracks and recessed slots accentuate the architectural vocabulary and ceilings while provide spotlighting, wall washing and general lighting flexibility throughout.

DAYLIGHT CONDITION

A preliminary daylighting analysis was conducted to investigate the sun penetration of the lobby area throughout the year. Daylight and sunlight will be embraced in the space as a possibility for man to claim a slice of the sun, and to see all the possibilities an artworks possess. To embrace the cool the warmth of the sun in this concrete jungle. To be grasped by the warmth of the sunlight and the marvelous change of mood of the sky, to experience the intertwined realms of public and private created by the light and shadow. Shadow study is done for the lobby space. Following images show the shadows on multiple

dates (December 21, September 21, June 21 and March 21) under a clear sky. The images are in sequence from 11am when the museum opens to 6pm when the museum close to the public.

Figure 5 | December 21 Shadow Study - lobby

Figure 6| September 21 Shadow Study – lobby

Figure 7 | June 21 Shadow Study - lobby

Figure 8 March 21 Shadow Study - lobby

Figure 5, Figure 6, Figure 7, *and* Figure 8 shows the museum lobby receive direct sunlight penetration during the afternoons when sun is very low. The adjacent apartment complex was taken into consideration in building the daylight model, as well as the upper floors of the museum. However, it is very likely that buildings beyond the extents of the model can block the direct sunlight.

COMPUTER RENDERINGS

Figure 9 | *Lobby renderings*

LUMINAIRES

AL-1, LED spotlights with flood distribution lens AL-2, LED spotlights with spot distribution lens AL-4, LED wall washer

LIGHTING PLAN

Figure 10 | lobby lighting plan

PERFORMANCE DATA

Illuminance level – target | provided 100lux |87 lux Avg:Min – target | provided 4:1 | 3.7:1 Power density – target | provided 1.3W/ft2 0.69 W/ft2

PERFORMANCE SUMMARY

Depending on the sculptures in the space, spotlights from different directions will need to be aimed to perform the desired sculpture lighting. Overall lighting system in the lobby space is very simple and flexible. The goal of achieving an obtrusive system construction is also achieved through recessed channels that allow tracks and luminaires to be hidden.

The target of 100 lux is achieved with a preliminary light level calculation in lobby. However, depend on the museum's intention of the space; spotlights will need to be particularly aimed for the sculpture and installations. The shadow study introduces the idea that while direct sunlight penetration can occur in the space, it is not necessary to block it. Since the lobby area acts as a plaza rather than a regular museum lobby, it was decided that most of the times, the sunlight would not being treated as disturbing, but rather as a connection to the nature.

Overall, the light redesign for the space took a different approach from the original light design where the general areas in the museums are lit using surface mounted track lighting system. The hidden channels introduce less bright spot on the ceiling when pedestrians walk by at night. Rather, the idea of depth is introduced as people can see deep into the space because of the obtrusive lighting system. Design criteria were met.

Special purpose space | THEATER

DESCRIPTION

The theater located on the south east corner of the third floor, houses 170 seats. The theater space is used for multiple configurations and activities, including performances, films, and installations. A similar track system as the lobby is proposed with the addition of wall washers to wash the walls to create a more pleasant space for the audience in between performances. Because of the multipurpose nature of the room, the lighting solution needs to be flexible. One typical problem with adding linear tracks is that lines introduce directions. To reinforce the flexibility of the room, the track drew inspiration from the industrial character of the neighborhood and overhead railway, mimicking a railway track change pattern. It has an area around 2,400 square feet (64 ft x 37 ft) with a ceiling height of 25' 11".

Black box Theater application includes:

- 1. Multi-media presentations
- 2. Motion picture films
- 3. Lectures
- 4. Podium discussions
- 5. Performances
- 6. Screening of new artwork
- 7. Rentable for outside parties

Figure 11 | *Theater floor plan*

Surface	Name	Description	Reflectance
Floor	W-1	Yellow Pine Flooring 4" Width	0.4
Wall	P-2	Gypsum wall board, painted	0.6
	PLYWO	3/4" thick square edge Plywood Panel	0.5
Ceiling	CL-10	Theater ceiling assembly - reflective	0.7
-	CL-11	Theater ceiling assembly - absorptive	0.7

Table 3 | Theater surface material

The glazing system consists of WDW-1 windows integrated with WT-2 system, of a 10 mm low iron outer lite, 12 mm argon filled cavity, and 10 mm laminated inner lite (5 mm low iron/1.5 mm clear PVB interlayer/ 5 mm low iron) with neutral appearance high performance low-e coating on the #2 surface, and laminated outer lite for acoustical performance.

DESIGN CRITERIA

Qualitative Criteria:

As the theater architectural lighting serves different functions for film, performance and installation, flexibility of the design is crucial. Some other very important criteria for the space include high color rendering (CRI \geq 85) as well as good dimming ability (smooth, excellent dimming range, etc.). Aisle lighting need to meet the requirement for illuminance and uniformity to allow for safe and convenient access into and out of the space at all times. Minimum shadow for aisle lighting is desired.

IES suggested important criteria: System Control and Flexibility *IES suggested very important criteria:* Color Appearance (and Color contrast) Daylighting Integration and Control Modeling of Faces or Objects

Quantitative Criteria:

Illuminance Recommendation [IES Lighting Handbook 10th Edition (Table28.2)]:

Space Type	$\mathbf{E}_{\mathbf{h}}$	$\mathbf{E_v}$	Avg:Min
Audience Seating - During production	2 lux @ floor	1 lux @ 5ft AFF	2:1
Audience Seating - pre/post production and during intermissions	100 lux @ floor	30 lux @ 5ft AFF	2:1
Circulation - During production	2 lux @ floor	4 lux @ 5ft AFF	5:1
Circulation - pre/post production and during intermissions	100 lux @ floor	30 lux @ 5ft AFF	2:1

Energy Allowance [ASHRAE standard 90.1]:

Space Type	Power Density (W/sqf)
Audience/Seating Area for Performing	2.6 W/ft^2
Arts Theater	

DESIGN APPROACH

The black box theater located on the third floor is designed to be used for multi-media presentations, motion picture films, lectures, podium discussions, performances, screening of new artwork, and it can also be rented for outside parties.

The lighting design in this space explores the idea of coverage vs. flexibility. For the extreme variable purpose and activities that will be going on in this room, a very flexible lighting system can be essential. However exactly how flexible does the system needs is raised, can coverage give you flexibility without over complicate the system. Another important consideration for the space is unlike any other spaces in the building, theater is a place where people will most likely need to wait for the show to start and

observe the architecture not necessarily intentionally. So simplicity needs to be fused with drama. The concept offers a great opportunity for the lighting design to shine, to tap the underlying architectural features and at the same time, not losing touch to the museum, to its neighborhood, and to the melancholic, unruly beauty of the high line. To ensure the coverage, adjustable mono-points are recessed into the ceiling. A track system inspired by the rail tracks and the patterns of railroad switch is proposed. The track is to provide spotlighting possibilities of the space.

COMPUTER RENDERINGS

Figure 12 | theater renderings

LUMINAIRES

AL-3, LED wall washer AL-5 LED downlight AL-1, LED spotlights with flood distribution lens AL-2, LED spotlights with spot distribution lens

Figure 13 | *theater lighting plan*

PERFORMANCE DATA

Illuminance level – target | provided 100lux |92 lux Avg:Min – target | provided 2:1 | 1.8:1 Power density – target | provided 2.6W/ft2 1.19 W/ft2

PERFORMANCE SUMMARY

The lighting design in the theater successfully creates different options for different presets for variable activities. Two color temperature luminaires will be used in the space, but will not be on at the same time. The wall washers, as well as the downlights have warmer color (3000K) for events such as film or small performances. The warm color will help bring out the texture of the wood panel along the wall as well as the flooring. However, during events just as new collection screening, a cooler tone may be required to accurate appreciate the artwork.

The adjustable mono-points offered the flexibility that the space requires. While the railway inspired tracks are a great ceiling variation that offers flexibility and at the same time create drama for the space. Additional theatrical lighting design is required as the main design purpose for theater is house lighting. Similarly to main lobby, the use of primarily LED is able to reduce the power density much lower than traditional HID lighting system.

Large workspace | GALLERY

DESCRIPTION

The 8thfloor gallery is used to display parts of the permanent collection – typically a mixture of oil paintings and some sculpture with some works on paper. Because the gallery is on the top floor, it is the only indoor gallery that has daylight design potential. Arrays of north facing skylights are designed to incorporate natural daylight into the space. The main task in this space is to display artworks.

Figure 14 | *gallery floor plan*

Surface	Name	Description	Reflectance
Floor	W-3	Yellow pine flooring 8" width	0.5
Wall	P-2	Gypsum wall board, painted	0.6
Ceiling	CL-3	Exposed ceiling	0.7
Tuble 1 a			

SURFACE MATERIAL

Table 4 | gallery surface material

The ceiling is composed of the exposed structure with gypsum board finish with paint.

DESIGN CRITERIA

Qualitative Criteria:

The circulation and general lighting in an exhibit or gallery space should establish the background against which the displayed objects are to be experienced. Ultraviolet induces photochemical damage on many materials and is generally more detrimental than visible radiation. Thus, UV filters will be added to luminaires to preserve the arts. Room surface reflectances are assumed to be IES-recommended values of 90-60-20. Additionally, the magnitude of daylight must be well-controlled or automatically responsive to available daylight or both.

IES suggested important criteria:

Color Appearance (and Color contrast) Daylighting Integration and Control Direct Glare Light Distribution on Surfaces Light Distribution on Task Plane (Uniformity Modeling of Faces or Objects Reflected Glare Shadows Source/Task/Eye Geometry

IES suggested very important criteria:

Appearance of Space and Luminaires Luminances of Room surfaces Point(s) of Interest Sparkle/Desirable Reflected Highlights Surface Characteristics System Control and Flexibility

Quantitative Criteria:

Illuminance Recommendation [IES Lighting Handbook 10th Edition (Table21.2)]:

Space Type	E _h	E _v	Avg:Min
Object with low			
sensitivity to light	200 lux @ floor	200lux @ 5ft AFF	2:1
	Avg=0.2 times object Eh		
Circulation/general	but with min>10lx	Avg of 0.2 times object Ev	4:1

Energy Allowance [ASHRAE standard 90.1]:

Space Type Power Density (W/sqf)

Gallery	1.02 W/ft^2		

DESIGN APPROACH

As the only indoor gallery that has daylighting design potentials, it is the perfect space to create spatially diverse experiences for the visitors. The lighting solution is to embrace the temporality of natural light, to create experience that varies from time to time, to allow the visitors to confront different perception and sensation of each artwork. Natural light should be used to illuminate museum spaces so that visitors may be able to relate to nature and the effects of changing weather while inside the gallery.

The design derives from the principle that natural light is the ideal illumination for the contemplation of works of art. The gallery lighting will be amplified and regulated by the LED track system according to exhibition needs and the daylight available through the skylights. To take the biggest advantage of the natural northern light and for visitors to fully experience the nature, electrical lighting is reduce to the minimum.

The architectural lighting for the galleries is envisioned as a very simple and unobtrusive system. A 'hidden grid' idea for the track system is proposed. However, different from the lobby where the tracks are recessed into the ceiling, and the theater where the tracks are mounted at the ceiling surface, the gallery tracks are integrated with the structure elements to serve the purpose of discrete mounting position. Additionally, the lighting will be supplemented with the lighting provided by the exhibition designers for the exhibits.

COMPUTER RENDERINGS

Figure 16 | Light track and structure integration details

Figure 17 | gallery rendering

LUMINAIRES

AL-1 LED spotlights with flood distribution lens AL-6 LED downlight

LIGHTING PLAN

PERFORMANCE DATA

Illuminance level – target | provided 200lux |186lux Avg:Min – target | provided 2:1 | 1.9:1 Power density – target | provided 1.02W/ft2 0.5 W/ft2

PERFORMANCE SUMMARY

The electrical lighting system in the room is well balanced in relation to the daylighting introduced by the skylights. Detailed daylighting analysis of the 8th floor gallery can be found in section four.

Additionally, with the original light tracks going perpendicular to the exposed steel beams on the ceiling, the newly proposed light tracks are going along with the I beams. The alternate lighting design introduced less ceiling distraction. Additionally, hidden channels are proposed that ate integrated with the structure to create a visually unifying ceiling system. Qualitative criteria are achieved as well as the quantitative ones.

SECTION THREE| electrical depth

A system upgrade integrated with the mechanical breadth is investigated.

With the CHP system upgrade discussed in section seven, the system voltage can be upgraded to 480Y/277V from the existing 208Y/120V without relying on the central grid for the main power supply. Because the CHP system is selected based on a preliminary estimation, the exact electrical load that can be provided with the on-site generator is undefined. Thus assumptions were made that the electric loads will be met by the CHP system.

EXISTING ELECTRICAL SYSTEM

The existing electrical design for the Houston Museum of American Art utilizes two parallel service entrances connects to the switchgears located on the cellar level. The service is feed by the Consolidated Edison Company of New York, with incoming service voltage of 208Y/120V. Following image shows the service entrance detail.

Figure 18 | cellar electrical enlarged plan and service entrance detail

SYSTEM UPGRADE

The existing switchboard schedule for the (2) service switchboards and (2) distribution switchboards are shown as below.

	SERVICE SWITCHBOARD SCHEDULE 208 / 120 V - 3 PHASE - 4 WIRES - 200,000 AIC																												
		щ 51	итсные	MRD O	PTIONS			FEEDER S	WITCH			swi	CH OPTIONS					1				FEEC	ER (EACH)						
SWITCHBOAR DESIGNATION	13 RATIN	CESSIE 2025516	D. PHASE	SPD	POWER	No.	SWITCH	SWITCH	Puse	POLS	ES 3 PH45	BLOWN FUSE	SHUNT	ALX, CONTACTS	OTHER	FEEDER	LOAD DESCRIPTION	LOAD (KVA)	CUMNITIY OF FEEDERS	PHAS	IE LEGS	NE	UTRAL	680	NND	INSULATION TYPE	conput	VETER	REMARKS
		\$ ~	METER	5	INC I CA		444.5	11146	492.0		Associate in	(NO TRUP	inter-	TRIP					,,	No.	\$47E	No	SIZE	No.	\$4ZE	SPECIFICATION	4600	POR BAS	
						1	4000A	BPS	4000A	3	YES	YES	-	2	-	SS-1#1	BUS CONNECTION TO DS-1	1645.6	-	-	-	-	-	-	-	-	-	-	-
						2	-	-	-	-	125	-	-	2	-	SS-142	FEED TO AUTOMATIC FIRE PUMP DISC. SWITCH	93.3	1	3	SOORCML		-	-	-	EPC	3*	-	SEE NOTE #1
	8	12 B	3 3	8	3	3	A036	BPS	8008	3	YES	YES	-	2	-	\$5-143	DP-C-K	262.2	6	3	250KCML	- 1	250KOVL	/··=···		THHN	2 1/2*	YES	PROVIDE SUB-METER
0	4	11		11	-	4	1200A	BPS	1000A	3	165	nes	-	2	-	55-144	04+0-1	221.2	3	3	ROCKOME		-	3 1	2/0	IMMS	3	-	WIN VID
						-	1200A	BPS	1000A	3	125	nes	-	2	-	55-140	0+-0-2	221.2	3	3	4008.000		-	Lin	-3/8/	IHHN	2	-	WTH VPD
	+ +	-	-	-	-	6	1202A	895	-	-	-	-	-	-	-	-	SPARE D	-	-	-	-	-	-	-	-	-	-	-	-
							4004	0408	1004	3	10.5	103	-	2	-	00-140	10-C-15 10-11-45 100-5-45 10-5-45	80.0		3	ECONCME.		EDDKONL	-	-	VIIIN	3 1/2	-	WR A15-0-0
						1	4004	CHOR	1504	1	100	VES	-	1	-	05-143	102-3-41 (D-3-41/42 1/2-4-41 (D-4-41/42	87.0		1	6008/040		6000004	-		YMM	3 1/2*	-	-
						4	4104	OM08	3504	3	995	100	-	2	-	05-140	10P-5-41/42/43 UP-5-41	81.7		3	SOCIECMI	1	FORKOW	-	-	THE	3.1/2*	-	
						5	6004	ONOR	4504	3	YES	YES	-	2	-	05-145	10P-6-A1/A2, UP-6-A1, UP-7-A1, 10P-7-A1/A2	116.5	2	3	500KCMI	1	FORKOVI	-		XHHM	3 1/2*	-	-
						6	400A	OM08	200A	3	YES	YES	-	2	-	DS-1#5	LOP-8-A1/A2, UP-8-A1, UP-9-A1	55.9	2	3	250KCML	1	250KOVL	-		XHHM	2 1/2"	-	-
						7	600A	QMQ8	600A	3	YES	YES	-	2	-	05-147	0P-9-A	105.6	5	3	600KCML	1	600KOVL	-	-	XHHM	3 1/2"	-	-
1	ă	00 9	1 12	- 00	50	8	400A	ONOS	-	-	-	-	-	-	-	-	SPARE	-	-	-	-	-	-	-	-	-	-	-	-
8	4	5		1	×	9	1600A	BPS	1600A	3	YES	YES	-	2	-	05-1#9	EDS-2-DM-A	404.6	8	3	600KCML	. 1	ECOKOVE.	1	SOCKCME,	XHHK	3 1/2"	-	VIA ATS-2-EN-A
						10	400A	QMQ8	350A	3	YES	YES	-	2	-	DS-1#10	UP-3-C1 L0P-3-C1, UP-4-C1/C2, L0P-4-C1 87.0 1 3 600KOHL 1 600KOHL 31HH 3 1/2							3 1/2"	-	-			
						11	400A	QNQ8	400A	3	YES	YES	-	2	-	DS-1#11	PP-C-1	41.0	1	3	600KCML	- 1	ECOKOVE.	-	-	THHN	3 1/2*	-	FOR CARPENTRY SHOP
1						12	200A	QMQ8	150A	3	YES	YES	-	2	-	05-1#12	ACOUSTIC LOUVER/BANNER MOTOR CONTROL PANEL	35	1	3	350KCML	. 1	350KOVL	-		XHHW	2 1/2*	-	VIA LOCAL PUSED DISCONNECT SAITCHES
						13	800A	BPS	8008	3	YES	YES	-	2	-	05-1#13	DP-C-A	196.4	3	3	600KCML	1	600KOVL	-		THHN	3 1/2"	-	-
						14	400A	QNQ8	250A	3	YES	YES	-	2	-	DS-1#14	UP-1-RETAIL	5.0	1	3	250KCML	1	250KOVL	-	-	XHHW	2 1/2"	YES	-
						15	A006	BPS	800A	3	YES	YES	-	2	-	DS-1#15	DP-C-CH-A	173.0	2	3	600KCML	1	600KOML	-	-	THEN	3 1/2*	-	-
						16	400A	QMQ3	-	-	-	-	-	-	-	-	SPARE	-	-	-	-	-	-	-	-	-	-	-	-
						17	400A	QNQB	-	-	-	-	-	-	-	-	Share	-	-	-	-	-	-	-	-	-	-	-	-
						1	4000A	BPS	4000A	3	YES	YES	-	2	-	SS-2/1	BUS CONNECTION TO DS-2	1694.8	-	-	-	-	-	-	-	-	-	-	-
						2	400A	QNQB	250A	3	YES	YES	-	2	-	SS=2#2	UP-4-AUD-1/2/3/4	56.6	2	3	250KCML	1	250KOVL	-	-	XHHM	2 1/2*	-	-
2	ð		1 2	60	63	3	400A	QNQ8	-	-	162	-	-	2	-	55-2 # 3	FA PEED TO FA DISCONNECT SWITCH	30.0	1	3	1/0	1	1/0	-	-	THIN	1 1/2"	-	SEE NOTE #1
S S	8	5 3		15	÷	4	800A	BPS	800A	3	YES	YES	-	2	-	SS-2#4	EDPP-4	75	2	3	4/0	1	4/0	-	-	XHHW	2 1/2*	-	VIA ATS-4
						5	400A	QNQ8	400A	3	YES	165	-	2	-	SS-2#5	FEED FROM CHP	94	1	3	SOOKCML	- 1	SOCKOVL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		N XHHM	3"	-	
	-	_	-	-		6	1200A	BPS	1000A	3	YES	YES	-	2	-	SS-246	0H=C1=3	227.2	3	3	400KCML	. 1	400KOML	<u>p 1</u>	2/0) THHN	2.	-	VIA VFD)
						1	1600A	BPS	1500A	3	125	125	-	2	-	05-241	EDS-2-EW-8	413.0	5	3	SOCKCML		EGOKOVE	- coper	-SUCKUME	XHHW	3 1/2	-	WA ATS-2-EN-8
						Z	4CUA	0403	100A	3	165	res	-	2	-	US=2#2	D3*+LL-81/82, 0*+LL-81, 0*+3+81/82, 0*+4+81	108.3	1	3	CORCME	-	BOOKONL.	-	-		3 1/2	-	-
						3	600A	GMQ8	450A	3	162	nes	-	2	-	05-2#3	L0*-5-81, U*-5-81/82, U*-6-81, L0*-6-81	120.9	z	3	4/0	1	4/0	-	-	XHHW	2 1/2	-	-
						4	4004	0403	300A		163	nea	-	2	-	05-294	02-3-01/02	73.0	2		4/0		4/0	-	-	AHHW	2 1/2	-	-
						-	RCCA.	0000	1004		165	VER		2	-	05-245	0	101.1		3	COCKCML COCKCML		CODECONE.	-		ANNA	3 1/2		-
~						7	4004	04/02	4004		160	VEC	-	1		00-200	UP-0-0/02 109-0-01 18-1-01	75.4	1	1	ECONCMI ECONC		6000000	-	-	VIIII	3 1/2*	-	-
1 3	20	83	1 12	58	8		4004	CNUS	4004	1	125	103	1 -	2	-	05-297	109-5-01/02/03 18-5-01	817	2	1	3008/041		300KOM	1	1	1000	2 1/2*	-	12
ä	8	$^{\prime}$	· `	12	1 -	10	6004	OM08	5004	3	YES	YES	1 -	2	1 -	05-240	102-6-01 UP-6-01 UP-7-01 102-7-01/02	116.5	2	3	300KCML		300KCML	1 -		THEM	2 1/2	-	-
				1	1	11	8008	BPS	8008	3	165	165	-	2	-	05-2410	DP-C-8	226.1	3	3	600KCML	1	600KOVL	-	-	THEN	3 1/2	-	-
				1	1	12	800A	BPS	800A	3	YES	165	-	2	-	05-2411	0P-C-0H-8	120.1	2	3	600KCML	1	600KOVL	-	-	THEN	3 1/2"	-	-
				1	1	13	200A	QMQ8	200A	3	YES	YES	-	2	-	05-2412	PP-2-AI, PP-2-HT, PP-1-LD, PP-2-CHP	45.4	1	3	3/0	1	3/0	-	-	XHHW	2"	-	-
				1	1	14	400A	QMQ8	400A	3	YES	YES	-	2	-	05-2#13	MAD TERRACE COMPANY SWITCHES	72	4	3	4008CML	1	400KOVL	-	-	XHHM	3"	YES	MA TROUGH
			1	1	1	15	400A	QMQ8	-	-	-	-	-	-	-	-	SPARE	-	-	-	-	-	-	-	-	-	-	-	-
			1	1	1	16	400A	ON03	400A	3	YES	YES	-	-	-	DS-2#14	DP-C-C	24	1	3	600KCML	1	600KOVL	-	-	THIN	3 1/2"	-	-
				1		17	400A	ON03	- 1	-		-	- 1	-	-	-	SPARE	-	-	-	- 1	-	-	-	-	- 1	-	-	-

Figure 19 | *existing service switchboard schedule*

As no individual lighting panelboards are provided, the switchboard schedule is used to determine the loads switchboards need to feed for different sets of feeders. Assumptions were made that all feeders feed to lighting panels will be supply by the 480Y/277V system. Modification of feeder sizing will be resulted.

L	_	SPARE.	ı –
	DS −1 <i>¥</i> 1	E00P-C	50.0
	DS-1#2	UP-C-A1, UP-LL-A1, LCP-1-A1, UP-2-A1	61.7
	DS1#3	LCP-3-A1, UP-3-A1/A2, LCP-4-A1, UP-4-A1/A2	87.0
	DS-1#4	LCP-5-A1/A2/A3, UP-5-A1	89.7
	DS-1#5	LCP-6-A1/A2, UP-6-A1, UP-7-A1, LCP-7-A1/A2	116.5
	DS-1#6	LCP-8-A1/A2, UP-8-A1, UP-9-A1	55.9
	DS-1#7	DP-9-A	105.6
7	-	SPARE	1 -
ő	DS-1#9	EDS-2-EM-A	404.6
	DS-1#10	UP-3-C1 LCP-3-C1, UP-4-C1/C2, LCP-4-C1	87.0
	DS-1#11	PP-C-1	41.0
	DS-1#12	ACOUSTIC LOUVER/BANNER MOTOR CONTROL PANEL	35
	DS—1 #1 3	DP-C-A	195.4
	DS1#14	UP-1-RETAIL	5.0
	DS-1#15	DP-C-CH-A	173.0
	-	SPARE	-
	-	SPARE	-
	CC 0.0	DUE CONVECTOR TO DE D	1004.0

1	L.	33 290	91-91-9	221.2	L
		DS-2#1	EDS-2-EM-8	413.0	ĺ
		DS-2#2	LCP-LL-B1/B2, UP-LL-B1, UP-3-B1/B2, UP-4-B1	108.3	
		DS-2#3	LCP-5-B1, UP-5-B1/B2, UP-6-B1, LCP-6-B1	120.9	
		DS-2#4	UP-5-V1/V2	73.0	
	ΙC	DS—2 <i>#</i> 5	UP-7-81, UP-8-81, LCP-8-81	114.4	
		DS-246	DP-9-8	185.1	
N N	ΙC	DS-2#7	UP-C-C1/C2, LCP-C-C1, UP-1-C1	75.4	
6		DS-2#8	LCP-5-C1/C2/C3, UP-5-C1	89.7	
		DS-2#9	LCP-6-C1, UP-6-C1, UP-7-C1, LCP-7-C1/C2	116.5	
		DS-2#10	DP-C-B	226.1	
		DS2 # 11	DP-C-CH-B	120.1	
		DS-2#12	PP-2-A1, PP-2-HT, PP-1-LD, PP-2-CHP	45.4	Ĺ
		DS-2#13	M&O TERRACE COMPANY SWITCHES	72	
		-	SPARE	-	
		DS-2#14	DP-C-C	24	ĺ
		-	SPARE	-	

Table 5 | Distribution switchboard 1&2 schedule

The shaded panelboards and feeders are modified with the new voltage rating. The following table demonstrate the new feeder sizes.

	Load (kVA)	ampere	Growth	Existing Size phase legs	New Size phase legs
DS-1#3	87	104.7	130.9	600KCMIL	(1) 1/0
DS-1#4	89.7	107.9	134.9	600KCMIL	(1) 1/0
DS-1#5	116.5	140.2	175.2	(2) 600KCMIL	(1) 3/0
DS-1#6	55.9	67.3	84.1	(2) 250KCMIL	4
DS-1#7	105.6	127.1	158.8	(5) 600KCMIL	(1) 2/0
DS-2#2	108.3	130.3	162.9	600KCMIL	(1) 2/0
DS-2#3	120.9	145.5	181.9	(2) 4/0	(1) 3/0
DS-2#5	114.4	137.7	172.1	600KCMIL	(1) 2/0
DS-2#7	75.4	90.7	113.4	600KCMIL	2
DS-2#8	89.7	107.9	134.9	(2) 300KCML	(1) 1/0
DS-2#9	116.5	140.2	175.2	(2) 300KCML	(1) 2/0

Table 6 | Distribution Switchboard feeder size compare

The resizing of the feeder showed significant difference in terms of feeder sizes. The wire size is much smaller when sized on a conservative basis.

WIRE UPSIZING

The next related investigation is about whether upsizing wires can demonstrate real savings to the owners as well as the advantages of lower generated heat and increased flexibility of the installation, resulted into reduced energy requirements for fans and air conditioning systems. Many factors can affect the economic incentives of installing larger wire sizes. Through research it was found that for most new applications, the cost of labor and conduit for the installation outweigh the cost of wire, as a result, the increased size of

the wire can pay for itself in less than two years. Elements such as duty cycle, load factor and electricity price are key in determine the cost benefit of upsizing wires.

The study was performed to understand the impact of wire size on energy efficiency and costs. Assume a single-phase 15 ampere lighting load that operates 8 hours a day, and assume the load is concentrated about 100 feet from the panelboard. The savings due to less voltage drop is presented in following table prepared by Copper Development Association Inc.

	#12 AWG	#10 AWG
Conduit Size	1/2 in.	1/2 in.
Estimated Loss (at 15 amp load and 40°C, and 37°C, respective conductor temps.)	77 W	48 W
Wire Cost	\$11.82	\$18.57
Conduit Cost	\$42.00	\$42.00
Incremental Cost		\$6.75
Energy Savings		254 kWh/year
Dollar Savings: at \$0.07 per kWh Payback		\$17.78/year 5 months
Dollar Savings: at \$0.10 per kWh Payback		\$25.40/year 3 months
Dramatic, short term paybacks in a single-phase run, with flexibility for futu	re load chan	ges.

Table 7 | *wire upsizing example - lighting load*

The research on the benefit of wire upsizing has concluded that upsizing wires generally have short payback periods. With owners pay more upfront to buy wires larger in size, the energy loss is reduced when in use. However, the detailed analysis will need to be conducted to investigate the accurate benefit of upsizing wires for the project owners.

SECTION FOUR| MAE breadth

Daylighting plays a prominent role in the 8th floor gallery. A daylight study of the spatial conditions is conducted to analyze the amount and extent of daylight penetration into each space. A photosensor dimming system will be used to control the amount of electric light used during the day into the space. The critical point was calculated to see which point in the space needed the most amount of light to reach its target illuminance during the day.

The following images show the daylighting analysis on multiple dates (December 21, September 21, and June 21) for the gallery. The images are in sequence from 11am when the museum opens to 6pm when the museum close to the public. (The detailed glazing material can be found in Appendix)

Figure 20 | *December Daysim calculation - gallery*

Figure 21 | September Daysim calculation - gallery

Figure 22 | June Daysim calculation - gallery

Annual results were analyzed and displayed below. Daylight autonomy, continuous daylight autonomy as well as useful daylight illuminance are graphed for a target illuminance of 200 lux for horizontal illuminance of the space.

Figure 23 | Continuous daylight autonomy - gallery

Figure 24 | *Daylight Autonomy*

Figure 25 | useful daylight illuminance

Data generated by Daysim were analyzed and determined that generally, no sunlight penetration will occur in the space. Additionally, the highest possible illuminance on the floor contributed by the daylight is lower than 1000 lux (based on June's data). However, special conditions can not be eliminated and thus shades are recommended. Due to the data set provided does not include very large illuminance value contributed daylight, calibration of the photosensor for the shades were not done.

Electrical light in the room are dimmable and an open loop photosensor is used to dim the lights based on the daylighting condition for the space for a particular moment. The image below demonstrate the signal vs. optimal dimming level for the photosensor placement and selection.

Figure 26 | signal vs. optimal dimming level

Summary

Overall, the skylight design is analyzed. Promising daylighting conditions are resulted by the skylights design. Dimming system is implemented to integrate with the daylighting design. However, spotlights for artworks will still need to be on the dimming level requested by the artists.

SECTION FIVE | honors breadth

The honors breadth aims to investigate the social concepts that can affect lighting design and in turn influence the human perception and interpretation of the space. Three concepts researched including the motivation of why people visit museums, how people self-congregate, and different scale of perception, focusing on the idea "life, space, buildings – in that order".

MOTIVATION

One of the first social concepts investigated is the descriptive and predictive framework introduced by Dr. John Falk, professor at Oregon State University, for identifying museum visitors on the basis of their motivations, as related to their identity. The concept started with acknowledging the complex physical and social environments in a museum where different groups of people interact with each other in multiple ways.

Falk's research stated that museum visitors have different level of interest, motivation and curiosity, and often different appreciative and experiential knowledge. He categorized them into five groups reflecting different motivations: explorers, facilitators, experience seekers, professional hobbyists, and rechargers. According to Falk, explorers are driven by their personal curiosity, their urge to discover new things. Facilitators visit the museum on behalf of other's special interests in the exhibition or the subject-matter of the museum. Experience seekers desire to see and experience a place, such as tourists. Professional hobbyists are those with specific knowledge in the subject matter of an exhibition and specific goals in mind. Rechargers seek a contemplative or restorative experience, often to let some stream out of their systems.

However, the variable visitor identities do not mean museums have to design many different activities or exhibits, but rather to present a range of different experiences by respond to the audience's expectations and their perceptions of the institution. Thus, lighting approach through means to provide visitors personal context with whether the exhibition, the architecture, the atmosphere, or each other based on their unique identities is the key.

SELF-CONGREGATION

Self-congregation is the second social concept investigated. According to William H. whyte, an American urbanist, what attract people most, are other people. The concept was first brought home to Whyte in a study of street conversations. He found out that people didn't move out of the main pedestrian flow, rather they stayed in it or moved into it. They go to the lively places where there are many people. And they go there by choice – not to escape the city, but to partake of it.

To benefit from this concept, the natural junctions and transfer point of the lobby is studied to act as the basis of the lobby lighting Design.

SCALE PERCEPTION

The last but not least social concept studied is mentioned in Jan Gehl's book Cities for People, that the quality of a city space is directly related to its degree of concern for the human dimension.

The social field of vision was investigated by Gehl to study the relationship between the senses, communication and dimensions. According to Gehl, our sense of sight has adapted and developed to enable us to move linearly and horizontally at a walking. Earlier in our history it was important for walkers to be able to detect dangers and enemies lurking ahead, and on the path in front of them. It was also crucial to be able to keep an eye on what was happening on both sides of the path. As a result, our eyes can see clearly and precisely straight ahead and at a great distance. Furthermore, the rods and cones in the photoreceptor layer of the eye are organized primarily horizontally, enabling use to see movement

further out in the field of vision, perpendicular to the walking direction. However, our downward and upward sight has developed very differently. Looking down where it is important to see what we are stepping on, we humans can see up to 70-80 degrees below the horizon. Upwards, where in the later phases of evolutionary history we had only few enemies to beware of, the angle of vision is limited to 50-55 degrees above the horizon. Our horizontal field of visions means that when we are walking along building facades, only the ground floors can offer us interest and intensity. If ground floor facades are rich in variation and detail, our city walks will be equally rich in experience.

Since our senses and locomotors apparatus has only a limited field of upward vision, this whole account of the horizontal sensory apparatus is the key to how we experience space, for example, how much of buildings pedestrians experience when walking along streets. In general, the upper floors of tall buildings can only be seen at a distance and never close up in the cityscape.

At eye level the scene comes alive with movement and color. While the designer sees the whole building – the clean verticals, the horizontals, the way corner turns, and so on. But the museum visitors may be quite unaware of such matters. He is more apt to be looking in the other direction: not up at other buildings, but at what is going on at eye level or his handling of space.

To create a close-up experience for the visitors, a lighting approach will need to bring all the senses to bear. Every effort is made to keep the dimensions and design of outdoor space in harmony with the human scale and comfortable perception range.

SUMMARY

Three social concepts were investigated and implemented throughout the design phase of the project. While considering motivation and designing the space for all types of visitors, considering self-congregation to design for lobby based on human behaviors and habits, and last but not least considering the scale of perception to deem the parts of façade need to be lit while keep the others dark for energy conservation.

SECTION SIX | acoustical breadth

OVERVIEW

In this analysis, the acoustical situation for the 8th floor gallery is analyzed and calculated to determine whether the acoustical performance resulted in desirable reverberation times and echo levels and investigate the need for sound absorbing or reflecting materials.

DETAILED ANALYSIS

The space is essential a large rectangular box with gypsum board walls, wood flooring and skylights ceiling. The acoustical design needs to balances the necessary control of reverberation – to limit activity noise and help public address intelligibility- with the creation of an aural sense of the space. Reverberation time is one major parameter that carries clues on the intelligibility and noise levels due to the suspended sound within enclosed interior spaces. Interior finishing materials, form of gallery facing surfaces, related dimensions and the volume are variables that directly affect the reverberance that occur within galleries. Mid-frequency (500Hz-1000Hz) reverberation time maximum targets in the range of 1.2 -1.8 seconds with reference made to a wide range of previous gallery studies to refine the targets for reverberation control.

Dimensions

The gallery spans a total area of 4650 sf. Refer to the lighting section for the detailed room dimension and plans.

Calculation methods

Using the Sabine method, the absorptive co-efficient of materials applied across the space were compiled by unit surface area in order to obtain the reverberation time for common frequencies. The following formula was then used to calculate the reverberation time for each frequency:

T=0.05 x $\frac{v}{a}$

Where T= reverberation time required for sound to decay 60db after time has stopped (seconds) v= room volume (cf)

a = total sf of room absorption (sabins)

These values and results are summarized in the table below:

	8th floor gallery reverberation analysis													
	material	area		Sα - sabins by Frequency (Hz)										
surface	descirption	(sf)	1	25Hz	2	50Hz	5	00Hz	10	00Hz	2000Hz		4000Hz	
	gypsum													
	board	1121	0.55	616.6	0.14	156.9	0.08	89.7	0.04	44.8	0.55	616.6	0.98	1,098.6
coiling	glass	2475	0.35	866.3	0.25	618.8	0.18	445.5	0.12	297.0	0.07	173.3	0.04	99.0
Cennig	exposed													
	structural													
	steel	1946	0.73	1,420.9	0.69	1,343.0	0.99	1,926.9	0.89	1,732.3	0.52	1,012.1	0.31	603.4
	yellow pine													
Floor	flooring	4650	0.02	93.0	0.14	651.0	0.08	372.0	0.04	186.0	0.55	2,557.5	0.55	2,557.5
	painted													
Wall	gypsum wall	4504	0.55	2,477.2	0.14	630.6	0.08	360.3	0.04	180.2	0.55	2,477.2	0.55	2,477.2
	values per													
people	1/10 person	200	0.25	50.0	0.35	70.0	0.42	84.0	0.46	92.0	0.50	100.0	0.50	100.0
total Sabine ∑Sα=a		a		5,523.9		3,470.3		3,278.4		2,532.3		6,936.6		6,935.7
Rev	erberation Tin	ne		0.781		1.243		1.316		1.704		0.622		0.622

 Table 8| Reverberation analysis - gallery

Conclusion

The reverberation time for the mid frequency (500Hz-1000Hz) are within the criteria set of 1.2-1.8s. Thus the acoustical condition for the space is acceptable.

SECTION SEVEN | mechanical breadth

OVERVIEW

A complete, fully operational combine heat and power generation (CHP) system is originally designed for the Houston Museum of American Art. The designed CHP system is a 75kW gas-fired reciprocating cogeneration unit. However the CHP system is only responsible for a small portion of the building's total electrical and thermal load. Thus, a thorough feasibility analysis of using CHP system as the primary energy system for the entire project is conducted. A larger sized engine is investigated to comply with the increase load requirement. An in-depth of the cogeneration system will not be deliberated in this breadth; rather an overall feasibility analysis is conducted to estimate the performance and cost advantages of using a full scale Combined Heat and Power system.

BACKGROUND

Houston Museum of American Art relies largely on the central grid for power. There are several factors that indicating that using power from the grid is not the best option. First of all, a large amount of energy is lost during production and transmission; the end users generally can only get 33 percent of the primary energy input from the electricity power plant. Relying on the power grid also exposes the facility to potential surges, brownouts, and unexpected service interruptions, for example climatic hazards (Sandy). With increasing energy costs and growing concern on the environment, on-site energy generation can be a beneficial alternative to the grid. Additionally state and federal government provide financial incentives for CHP projects. Following *Table 9* displays the policy/incentive for the state of New York.

Policy/Incentive Name	Policy/Incentive Type
Agriculture Energy Efficiency Program	Rebate
CHP Acceleration Program	Grant
Custom Measures Commercial and Industrial Rebate Program	Rebate
Energy Smart New Construction Program	Production Incentive
Existing Facilities Program	Production Incentive
FlexTech Program	Grant
Industrial and Process Efficiency Performance Incentives	Production Incentive
Linked Deposit Program (LDP)	Loan
Local Option - Solar, Wind & Biomass Energy Systems Exemption	Tax
Manufacturing Assistance Program (MAP)	Grant
National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro NY)	Rebate
National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Upstate NY)	Rebate
New York Natural Gas Rates	Utility Rate
Tax-Exempt Equipment Leasing Program (TELP)	Tax

Table 9 Policy/Incentives for CHP projects in New York

FEASIBILITY ANALYSIS

The analysis is based on the Combined Heat and Power (CHP) Partnership by the U.S. Environmental Protection Agency (EPA), a government agency whose mission is to protect human health and the

environment. A five stages process that guides the projects from conception to completion is proposed by the EPA. This analysis will follow the stage 1 guidelines.

Measure 1

Stage 1 determines whether CHP is worth considering at a candidate facility. The goal is to identify project goals and potential barriers. Measure one is stage 1 is a checklists that helps the candidate to answer "is my facility a good candidate for CHP?" The preliminary checklist provided by EPA is answered and the results are displayed in *Figure 27*. Result shows that the Houston Museum of American Art is determined to be a good candidate for CHP.

Do you pay more than \$.07/ kilowatt-hours on average for electricity (including generation, transmission, and distribution)?
Are you concerned about the impact of current or future energy costs on your business?
Is your facility located in a deregulated electricity market?
Are you concerned about power reliability? Is there a substantial financial impact to your business if the power goes out for 1 hour? For 5 minutes?
Does your facility operate for more than 5,000 hours/year?
Do you have thermal loads throughout the year (including steam, hot water, chilled water, hot air, etc.)?
Does your facility have an existing central plant?
Do you expect to replace, upgrade, or retrofit central plant equipment within the next 3-5 years?
Do you anticipate a facility expansion or new construction project within the next 3-5 years?
Rave you already implemented energy efficiency measures and still have high energy costs?
Are you interested in reducing your facility's impact on the environment?

Figure 27 | CHP preliminary checklist by EPA

Measure 2

Another qualification for stage 1 is the consideration of the "spark spread". A Spark Spread Estimator is provided on the website to serve as a tool that evaluates the anticipated spark spread of a CHP system compared to using separate heat and power (SHP). Spark spread is the difference per kilowatt-hour(kWh) between the current delivered electricity price and the total cost to generate power with a CHP system. Generally, a numerically positive spark spread result indicates that the CHP project returns more than the cost of capital. The greater the spark spread, the higher the potential return in investment.

Building information was submit to the estimator. Results are generated.

Facility Energy Use*	
Facility Average Electric Demand, kW	1,826
Facility Average Heating, MMBtu/hour	5.7
CHP system information	
CHP System Type	Recip Engine
CHP System Capacity, kW	1,322
CHP Electric Efficiency	35.0%
CHP Thermal Output, Btu/kWh	4,299
CHP Thermal Output, MMBtu/hour	5.7
CHP System Fuel Cost (Natural Gas), \$/MMBtu	\$11.50
CHP Installed Cost, \$/kW	\$2,300
CHP O&M Cost, cents/kWh	\$0.0160
CHP Cost to Generate Power	
Operating Cost to Generate	
CHP Fuel Costs, \$/kWh	\$0.1122
Thermal Credit, \$/kWh	(\$0.0378)
Incremental O&M, \$/kWh	\$0.0160
Operating Costs to Generate Power, \$/kWh	\$0.0904
Capital Charge, \$/kWh	\$0.1209
Total Costs to Generate Power, \$/kWh	\$0.2113
Current Average Electricity Price, \$/kWh	\$0.1920
Spark Spread, \$/kWh**	(\$0.0193)

 Table 10 | CHP Spark Spread Results

Energy Use	No CHP	With CHP	Difference
Annual Electricity Use			
Annual Purchased Power, kWh	3,797,626	1,186,142	(2,611,484)
Annual CHP Power Generation, kWh	0	2,611,484	2,611,484
Total Annual Electricity Use, kWh	3,797,626	3,797,626	0
Annual Thermal Energy Use			
Non-CHP Thermal Use*, MMBtu/yr	11,818	591	(11,227)
CHP Thermal Used, MMBtu/yr	0	11,227	11,227
Total Thermal Energy Use, MMBtu/yr	11,818	11,818	0
Annual Fuel Use			
Non-CHP Thermal Fuel Use*, MMBtu/yr	14,772	739	(14,033)
CHP Fuel Use, MMBtu/yr	0	25,488	25,488
Annual Total Fuel Use, MMBtu	14,772	26,227	11,455
Operating Costs			
Purchased Electricity	\$729,144	\$277,880	(\$451,264)
Purchased Fuel	\$103,995	\$301,607	\$197,612
Incremental O&M	\$0	\$41,784	\$41,784
Annual Operating Costs	\$833,140	\$621,270	(\$211,869)
Annual Operating Savings			\$211,869

Table 11 | Estimate of Annual Energy Use and Operating Costs

The annual operating savings predicted by the Spark Spread Estimator is \$211,869 which takes into account CHP's system capacity, electric efficiency, thermal output, system fuel cost, installed cost, and operation and maintenance costs.

As a result, based on the stage 1 of the feasibility analysis provides by EPA for combined heat and power, Houston Museum is a very good candidate for using cogeneration. A full scale CHP system can be predicted to provide an annual operating savings of approximately \$200,000. Thus, it is highly recommended for the owner to consider the system as well as further in-depth analysis to be conducted to further assess the system and its practicality for this particular project.

SUMMARY AND CONCLUSION

Overall, great effort was exercised to provide designs for all the proposed systems in the Houston Museum of American Art. The lighting design for each of the four spaces closely follows the overall concept that focus around the idea to engage. The exterior luminaires was able to be more appealing to the human scale and more emphasis on how visitors and pedestrians see the space. Upon entering the lobby, occupants are able to enjoy the plaza-like indoor experience. The theater encompasses a lighting design that portrays the industrial inspiration of the nearby railway tracks. 8th floor gallery's lighting design integrates with other disciplines and creates a visually fascinating experience for the museum patrons. The lighting design in each space meets the required light levels and specified criteria.

Analysis of the existing skylight features in the gallery proved that north facing skylights are providing comfortable daylight while letting no direct sunlight coming through. An open-loop photosensor was determined to be used for controlling the ambient lights. The acoustical analysis of the room concluded that the acoustical condition in the room is acceptable. The cogeneration feasibility analysis established the first step towards developing combined heat and power system for the project.

Overall, the integration between different systems were thoroughly investigated and implemented enables both functional and visual impacts.

REFERENCES

ASHRAE Standard 90.1-2010. Atlanta, GA: American Society of Heating, Refrigerating and Air Condition Engineers, Inc. 2010

Falk, John H.. *Identity and the museum visitor experience*. Walnut Creek, Calif.: Left Coast Press, 2009. Print.

Gehl, Jan. Cities for people. Washington, DC: Island Press, 2010. Print.

Houser, Mistrick, and Stefy. The IESNA Lighting Handbook: Reference & Application. 10th ed. New York, NY: Illuminating Engineering Society of North America, 2011.

National Electric Code 2011, Quincy, MA: National Fire Protection Association, Inc. 2011

Whyte, William Hollingsworth. *The social life of small urban spaces*. Washington, D.C.: Conservation Foundation, 1980. Print.

Туре	Description	Manufacturer	Catalog Number	Lamp Type	Input watts
AL-1	Optec LED spotlight with flood lens, dimmable, 4000K	Erco	71058.000	LED	24W
AL-2	Optec LED spotlight with spot lens, dimmable, 4000K	Erco	71022.000	LED	24W
AL-3	Optec LED lens wall washer, 3000K	Erco	71063.000	LED	24W
AL-4	Optec LED lens wall washer, 4000K	Erco	71033.000	LED	24W
AL-5	Quintessence downlight with LED, 3000K	Erco	47812.000	LED	24W
AL-6	Quintessence downlight with LED, 4000K	Erco	41511.000	LED	24W
AL-7	Hensley LED ingrade	Winona	HELED-9006-12V- L4-L0-SIS-F0-SHO- TF-0-STD	LED	18W
AL-8	Axis Walklight	Erco	33750.000	LED	1.7W
AL-9	Winline Surface Linear 309 Wet	Winona	WSL-309	LED	64.2W

APPENDIX A: LUMINAIRE SCHEDULE AND CUT SHEETS

Mounting ERCO DALI track Hi-trac DALI track Monopoll DALI track DALI singlet

ERCD GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/71058.000 AL-1

Mounting ERCO 3-circuit track Hi-trac 3-circuit track Monopoll 3-circuit track 1-circuit singlet

ERCD GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/71022.000 AL-2

Mounting ERCO DALI track Hi-trac DALI track Monopoll DALI track DALI singlet

ERCD GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/71063.000

Mounting ERCO 3-circuit track Hi-trac 3-circuit track Monopoll 3-circuit track 1-circuit singlet

ERCD GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/71033.000

Technical Region: 230W/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/47812.000

ERCO GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com

1/2

AL-5

ERCD GmbH Brockhauser Weg 90–92 58507 Lüdenscheid Germary Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/41511.000

ERCD GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 27.10.2012 Current version under www.erco.com/33750.000

1/3

	States of the local division of the local di			-
	-		Winline Surface Linear - WSL	WSL
	-			series
		309 Wet	Madel 2020 Aurol ADD	-
			Wodel Straw Met - 302	
-				model
-	-		Total Run Length In Feet	1
	-	9.	offered in 6" increments starting at 12"	nin long
			ex. 24 FT= 24 toot run or	code
Series:	WSL - W	Unine Surface Linear	Preconfigured Run Length Code	
		1	or page of	
Model:	Model 30	is wet	TBD when run length unknown	
Run Length	Total Ru	n Length in Feet	10000000000000000000000000000000000000	
Code:	309W Of	Tered in 6" increments Starting at 12"	15* - 15	
	CA. 24 P	I - AN FOULTURE	30" - 30	beam spre
	Preconfil Sec Cont	gured Run Length Code	100" - 100	
	occ oubi	and a set and a set of a set o	ANSI-binned 2700K - 27K	
	To Be De	stermined	ANSI-binned 3000K - 30K	LED cod
	TED WH	en Run Lengen Unsnown	ANSI-binned 3500K - 35K ANSI-binned 4000K - 40K	
Beam Spread:	15 - 30 -	15 30*		
	60 -	60*	non-dimming 24 volt AC - ND24V	
	100 -		dimming 24 volt AC - DM24V	voltage
LED Code:	278 -	Color Temperature Invft Wft		
	30K -	ANSI-2000K White 723 16.0	fixed - F	
	40K -	ANSI-3500K White 845 16.0 ANSI-4000K White 875 16.0	adjustable - A	mount
Voltage:	ND24V -	Non-Dimming 24 Volt AC		
	DM24V -	Dimming 24 Volt AC	naturai (type III) anodized aluminum - NAA	
Mount:	F-	Fixed	semi gloss black paint - SGB semi gloss white paint - SGW	finish
	A-	Adjustable	custom paint finish - CPF	
Finish:	NAA - SGR -	Natural Type III Anodized Aluminum Semi-Gloss Black Paint		
	SGW -	Semi-Gloss White Paint	surface end feed - SE recessed bottom feed - BR*	
	urr-	Contraction Patric Printin	"available on F (fixed mount) only	power fee
Power Feed:	SE - "RB -	Surface End Feed Recessed Bottom Feed		
	"availabis	e an F (fixed mount) only	none - X	x
Options:	x-	None		options
Special:	STD -	Standard	surface end feed - SE	
- provide	MOD -	Modfled	back to back - B2B right angle - BA	special
Dowen at		MINE	recessed bottom feed - RB*	
The Winline 200) Series op	erates on 24VAC and can be dimmed with commonly	"Receased Bottom feed available on f	foed mount or
available low vo	itage mag e available	netic dimming equipment. A wide range of remote in 120V and 277V primary (see pages 65-66)	Describe Modification:	
MILLINITING		A D.ILISTING		
Both fixed and a	adjustable	mounts combined with an integral wire tray allow		
for ease of Insta	illation and	I organized wiring. The low profile fixed mount is		

The 300 Series utilize Nichia 757 white LEDs in four standard color temperatures.

AL-9

ERCO Hi-trac track

13400.000 White Length 2000mm

Product description Panel profile: aluminium, powdercoated. Upper part: empty compartment, for fixing of uplights, through-wiring or cover partite. Lower part: track. 4 isolated copper conductors and impressed earth conductor. When used as DAU track: one 16A circuit and two conductors for connecting to the DAU data line. When used as a 3-circuit track: three separately switchable circuits 16A each. The ERCO track system is approved to IEC 60570 (EN 60570/DE 0711 part 300). Weight 4.00kg

ERCD GmbH Brockhauser Weg 90-82 58507 Lüdenscheid Germany Tel.: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 26.10.2012 Current version under www.erco.com/13400.000

Academic Vita

Chang Liu

Current Address: 445 Waupelani drive, State College PA 16801 | cwl5153@psu.edu | [814] 321-4494

EDUCATION	The Pennsylvania State University Schreyer Honors College BAE/MAE E.I.T. status upon graduation	08. 2009 – 05. 2013
EMPLOYMENT	 COYMENT Office for Visual Interaction, New York, NY Lighting Design Intern Worked with a team of lighting designers on different aspects of the des Responsibilities include conceptual design, design development, layout, Mock-up study, manufacturer communication, Chinese translation, calculat control stratage. 	
	Joseph R. Loring and Associates, Inc., New York, NY Electrical Intern • Assisted with lighting and electrical system calculation and design • Worked extensively with AutoCAD • Participated in field surveys on institutional based projects	05. 2011 – 08. 2011
	The Penn State Food Service, State College, PA	09. 2009 - 01. 2012
ACTIVITIES	Illuminating Engineering Society Phi Alpha Epsilon, Architectural Engineering Honor Society Tau Beta Pi, Engineering Honor Society Student Society of Architectural Engineers Penn State International Dance Ensemble Habitat for Humanity Service Spring Break, Clay County, Florida IALD Enlighten Americas 2011 Conference	
ACHIEVEMENTS	Schreyer Scholar AE Class of 1975 Scholarship Henrietta M. Fisher Scholarship IES-Phila. Sect. of Illumination Engr. Society Scholarship	
SKILLS	AGI32, Daysim, Radiance, Ecotect, 3D AutoCAD, Revit, Photoshop, In-	lesign, Chinese
SPECIALIZED COURSE	BIM studio - Lighting/Electrical Consultant (Spring 2012) Integrated design is accomplished in a highly collaborative environment b from each discipline, using building information modeling technology and delivery.	y teams of 6 students d integrated project